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The Orofino-Flory (OF) type smoothed-density theories for the end-distance expansion factor ~R and the 
second virial coefficient Az of flexible chains with three-segment interactions are inconsistent with first-order 
perturbation calculations unless the ternary cluster integral fla is zero. It is shown in the present paper 
that the inconsistency arises from the factorization approximation to segment density distribution functions 
invoked in the smoothed-density model and that a proper treatment of such functions leads to expressions 
consistent with the perturbation calculations but different from the OF type equations. Thus, for non-zero 
[/3 and near the ® point the previous smoothed-density or mean-field theories retain no valid place, even 
though those for A2 account for a few experimental findings (at or below the ® temperature) that 
two-parameter theories fail to explain. In particular, the prediction of a coil-globule transition by the OF 
type equations has no theoretical significance. It is also shown by a perturbation calculation that when 
both binary and ternary cluster integrals are vanishingly small, ~R for an infinitely long chain is expressed 
in terms of a single excluded-volume variable up to second order in f13 with the same numerical coefficients 
as those in the two-parameter theory. 

(Keywords: excluded-volume effect; expansion factor; second viriai coefficient; smoothed-density theory; three-segment 
interaction; coil-globule transition) 

I N T R O D U C T I O N  

Recent experiments TM have shown that the ternary 
cluster integral f13 for the interaction among three 
segments in flexible chains generally remains positive at 
the ® point where the second virial coefficient A 2 
vanishes. This suggests the breakdown of the binary 
cluster approximation to polymer properties in dilute 
solution near ®. In fact, two important experimental 
findings are available which can hardly be explained in 
the framework of two-parameter theory. One is the 
molecular weight independent behaviour of A 2 below 
05 7, and the other, positive A 2 values for very low 
molecular weight samples at the ® temperature at which 
A2 for high molecular weight samples vanishes s-x°. 
These findings were qualitatively explained s'a~ by the 
Orofino-Flory (OF) smoothed-density theory 12 with 
non-zero//3 or essentially the same theory of Tanaka ~ 1. 

However, the explanation does not seem conclusive, 
since, as pointed out by Yamakawa 13, the OF theory is 
inconsistent with a seemingly more correct first-order 
perturbation calculation a3 unless/13 happens to be zero. 
The inconsistency is serious in that the two types of 
theory give different interpretations 3 of ®. Yamakawa ~3 
also found a similar inconsistency to exist in the end- 
distance expansion factor. Thus, the present study was 
undertaken to find the origin of these inconsistencies, 
confining itself to infinitely long chains. 
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SECOND VIRIAL CO EF F ICIEN T 

We consider two identical, long flexible chains of 
molecular weight M each of which is Gaussian in 
the unperturbed state. Given an average intermolecular 
potential I"12 as a function of the distance S~2 between 
the centres of mass of the two chains, A2 may be expressed 
by: 

A 2 = 2 ~  2 f{1-exp[-Vx2(S,2)/kBT]}dSt2 (1) 

where N A is the Avogadro constant, ka the Boltzmann 
constant and T the absolute temperature. Taking two- 
and three-segment interactions into account, we may 
express 1/12 in the smoothed-density model as14: 

V12(S12)/kBr=f12 ~ Pi,(s)P~(s-S12)ds 
• "2 LJ 

+2fl3 ~ ~ f Pi,j,(s,s)Pi2(s-Sxz)ds 
i t  < j l  i2 

(2) 
Here, P~(s) [or Pi2(s)] denotes the distribution function 
for the distance vector s of segment i t in chain 1 (or 
segment i 2 in chain 2) from the centre of mass, and 
Pt,j,(s, s), the bivariate distribution function associated 
with a pair of segments i~ and Jl belonging to chain I; 
f12 and n denote, respectively, the binary cluster integral 
and the number of segments in each chain. 
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We consider no intramolecular excluded-volume effect. 
Then, the distribution functions Poi,(s) and Poio,(s, s) in 
the unperturbed state are obtained by the standard 
method 14 as: 

Poi,(s) = (3/2~(S 2 )o) 3/2 exp(-  3s2/2(S 2 >o) (3) 

Poll j,( $, S) : [-3/2~zb2(jl  - -  i 0 ]  3/2(3/2~z( D2k >0) 3/2 

x exp(--  3s2/2(D2j, )o) (for J1 > il) 

where 

nb2(1 3il 3i2"~ 

T 

(4) 

(5) 

2 nb 2 r " 3j2 3(/2- i2)(jl + i1!] (6) 
(Diu')°=yLl-3JZ-~n n 2 4n 3 

and b is the segment length. The segment density 
distribution function ~i, P0i,(s) may be replaced in a good 
approximation 14 by: 

Poi,(s) = n(3/2rr(S2)o) 3/2 exp(-  3s2/2($2)o ) (7) 

with ($2)o being the mean-square radius of gyration of 
the unperturbed chain considered, i.e. ($2)o =nb2/6. To 
evaluate ~i, <i, Poio,( s, s) we introduce a cut-off parameter 
a so that il<~jl-tr. Thus, tr represents the minimum 
number of consecutive segments needed for the formation 
of a loop in one chain; it should be much smaller than 
n. With this parameter, ~ Poiu,(s, s) for very large n may 
be evaluated first by integration over i~ by part and then 
by use of the above Gaussian approximation to ~i, Poj,(s) 
[i.e. equation (7) with the sum replaced by an integral]. 
The result thus obtained reads: 

2n'/2 ( 3 ) 3 f 3 s2 ' 
Poid,(s,s)-63/2ax/2 2 ~  o exp t -2 (S2)o  ) il < jJ 

(nl/2>>ffl/2> 1) (8) 

Substitution of equations (7) and (8), together with a 
similar expression for Poi~(s-S12), into equation (2), 
followed by integration, yields: 

F / nV /2  -1 
V12(S12)/kaT= 33/2L2"2 + 4to) J -  23 exp(- 3S22/4(S2>°) 

(9) 

where 

2"2 = (3/2~b2)3/2 f12 nl/2 (10) 
z 3 = (3/2r ib 2) 3fl3 ( 1 1 ) 

The integral in equation (1) with equation (9) is 
approximately evaluated by the OF procedure12 to give: 

167rNA(S2>3/2" f l  33t2rc1/2 [ fn'~U2 -]) 
A2-  33/--57~ m t  + 4 z 2 + 4 ~ ) z a J j >  

(12) 

for positive or small negative A 2. If the intramolecular 
excluded-volume effect is introduced by invoking the 
uniform expansion approximation, ($2)o 3/2, z2 and z3 in 
this expression are replaced by ($2>03/20~ 3, z2/oc 3 and 2'3/0~ 6, 
respectively, with 0~ being an expansion factor. 

When Z2"~-4(/'l/0")1/22' 3 is much smaller than unity, 
equation (12) gives: 

NAn2[fl2+ 4 f 3 \3/2 

which agrees with the first-order perturbation calculationX a 
for infinite n; note that a is set equal to unity 
in reference 13. The first-order calculation for finite 
n shows that an additional term -8(3/2rcb2)a/2fla/nU2 
exists in the square brackets of equation (13) TM . The 
expression including this term can be derived from 
equation (1) with equations (2)(6) (or even by use of the 
Gaussian approximation for ~ Pol,). Either equation (12) 
or (13) indicates that ®~ (® for infinite n) is the 
temperature at which f12 + 4a- UE(3/2rcbz)a/2f13 = O. 

If Poiu,(s, s) is approximated by Poi,(s)Poi,(s) and if 
equation (7) is used, V~2 is obtained as: 

V12(Sl2)/ka T= 33/2[2'2 exp(-  3S22/4(52>o) 
+ 8z 3 exp(-  $22/(S2)0)] 

This is the OF potential and leads to the OF expression 12 
(without intramolecular excluded volume): 

161rNA(S2>3/2133/2M2 --33/27zl/2 1 A 2 - In lq-~---(ZE-I-33/223) ( O F )  

(14a) 

Note that the parameters X1 and X2 in equation (17) 
of reference 12 are equal to 33/22" 2 and 8 x 33/2z3, 
respectively ~ 3. In the vicinity of ®, equation (14a) gives: 

NAn2F +33/2( 3 ~  3/2 fl3 "'] (14b) 
A 2 = ~ [  f12 \2rtb2J /11/2+. 

which indicates that the condition for ®o~ is given by 
f12 =0 .  

The OF equation (14a) differs from equation (12) in 
the ternary cluster term. Apparently, this discrepancy 
results from the above replacement of Po~,~,(s,s) by 
Po~(s)Poji(s). Thus, we find that the inconsistency of the 
OF theory with the first-order perturbation calculation 
arises from this factorization approximation, i.e. ignoring 
the effect of chain connectivity on the probability of 
segment collision in one of the two interacting chains. 
From this, two points may be made. First, the 
explanation s'~ ~ of the behaviour 5-1° of experimental A2 
at and below 19, mentioned in the Introduction, has little 
theoretical significance. Second, the vanishing of f12 
cannot be regarded as the 19 condition for long chains 
unless f13 happens to be zero. 

END-DISTANCE EXPANSION FACTOR 

As mentioned in the Introduction, the smoothed- 
density 12 and perturbation la theories of the expansion 
factor ct R for the mean-square end-to-end distance (RE> 
are also inconsistent The former leads to: 

~2 = 1 + dl,Z 2 +d223 +"" (smoothed-density) (15) 
with dl and d2 being positive constants, while the latter 
is shown to give for large n: 

Ct2=l+~[Z2 /n\U2 7 + 4 t ~  ) z3J+""  (perturbation) (16) 

Thus, apart from the numerical constants, the two 
expressions differ again in the ternary cluster term. 
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The end-to-end distance of a smoothed-density chain 
may be calculated from: 

<R2)= f R2po(R)e-V(R'/ksr dR/ f Po(R)e-V(R)/kBr dR 

(17) 

using the unperturbed distribution function Po(R) for the 
end-to-end vector R and the intramolecular potential 
V(R) given, respectively, by: 

Po(R) = (3/2Irnb2) 3/2 exp( - 3R2/2nb 2) (18) 

i< j  i < j < k  d 

(19) 

In equation (19), Po(s, slR) denotes the conditional 
probability density of finding segments i and j in the 
volume element ds under the condition that the 
end-to-end vector of the chain is fixed to R; Piik(S, S, sIR) 
is self-explanatory. We evaluated these functions first in 
the unperturbed state (see reference 14 for the procedure) 
and then transformed them to those in the perturbed 
state using the uniform expansion approximation. The 
result thus obtained for V(R) is written as: 

V(R)_ z2 X" n 
kaT ot 3 i ~  [(j-i)(n-j+i)] 3/2 

x exp[ 3(j- i)R 2 iil 
2nb2~2(n-j+ 

Z 3 n 3/2 
+~ Y 

~R i<j<k [(k-j)(j--  i)(n-- k + i)] 3/2 

x expI 3(k - i)R 2 1 
2nb-~2(-~_k + i) j (20) 

Using the Hermans-Overbeek approximation ~6 after 
substitution of equations (18) and (20) into equation (17), 
we get: 

5 3 (_~)I/2[ +4(n'~I/2 Z31 
• , - ~ , =  z 2 \~,] ~ j  (21) 

This equation is consistent with the first-order perturbation 
calculation [equation (16)]; the slight difference between 
the numerical constants (2rc/3) x/2 [in equation (21)] and 
4/3 [in equation (16)] is due to the Hermans-Overbeek 
approximation. Equation (21) differs in the z3 term from 
the OF type equation12: 

z-2 (OF type) (22) 

The latter can be derived when Po(s, siR) and P~k(S, S, siR) 
in equation (19) are approximated by Pi(slR)Pj(slR) and 
Pi(slR)P~(slR)Pk(slR), respectively. Thus, as is the case with 
A2, the factorization approximation is responsible for the 
discrepancy between the z 3 terms of the OF and 
perturbation equations. 

DISCUSSION 

We have shown that chain connectivity plays a crucial 
role in the ternary cluster terms of A2 and ~ .  As may be 
seen from the present calculation and also from 
perturbation calculations by others 13'15'17, a pair of 

segments at a short contour distance in one chain 
contributes primarily to these terms. Since a chain portion 
consisting of a small number of segments, say t, may not 
fully be perturbed, the uniform expansion approximation 
invoked in deriving equation (21) is likely to be invalid 
for the ternary cluster term of ~R at least near 19. If t 
segments are unperturbed and if n 1/2 >> t 1/2 >> 0 "1/2, it can 
be shown that z3 replaces 23/~ in equation (21). This 
suggests that ~R near 19 should read: 

~5 . .3_49  (23) 

where 

Z = z2 + 4 z a (24) 

In equation (23) we have replaced the numerical coefficient 
(2~/3) 1/2 by 4/3. In the vicinity of ~tR= 1, this equation 
gives ~2 = 1 + (4/3)Z- (8/3)Z z + ' . . ,  whereas equation (21) 
leads to ~t] = 1 + (4/3)Z- (8/3)Z z - (32/3)(n/o)l/2z3Z +... 
if the coefficient (2~/3) 1/2 is again replaced with 4/3. 
Hence, the difference between these equations appears in 
the second and higher orders of z3 in the expansion. 

To confirm the relevance of equation (23) near 19, we 
have made a second-order perturbation calculation of ~2 
(to order in f12, f12f13, and fl]) for an infinitely long chain 
assuming that both f12 and f13 are vanishingly small. The 
calculation is laborious but elementary (see reference 14), 
and only the result is presented here. It reads: 

ct z = 1 + ~ Z -  ( 3 ~ - ~ z ) Z  2 +. . .  (25) 

This expression is in line with the Z expansion of equation 
(23), leading to the conclusion that the uniform expansion 
approximation is invalid near 19. This should also be the 
case for A 2. 

Importantly, equations (23) and (25) are formally 
identical, respectively, to the modified Flory equation 
and the z2 expansion of ~ ,  both in the binary cluster 
approximation 14. If, as is often assumed in the vicinity of 
19, f12 varies linearly with 1/Twhile f13 is independent of 
T, the relation Z=constant  x M1/2(1-19/T) holds in a 
fixed solvent at temperatures close to 19. As T is removed 
from 19, however, this relation should become inadequate 
and z 3 in equation (24) may be expected to approach z3/~ ~ 
eventually. Equation (21) corresponding to the fully 
perturbed state indicates that the ternary cluster term is 
insignificant for large ~ .  

The OF type equation (22) for ~R (or more correctly 
for the radius expansion factor) predicts a coil-globule 
transition to occur in a single chain far below 19, provided 
that d223 is larger than a certain positive value 18A9. 
However, this prediction is incorrect, since the theory 
ignores the effect of chain connectivity on segment 
density distribution. For ~R<< 1, our equation (21) gives 
~ = constant. This result is odd and incompatible with 
the prevailing notion 2°,21 that a long flexible chain should 
collapse to a globule far below 19. Probably, we should 
take into account segment interactions higher than the 
ternary one to discuss the dimensions of a collapsed coil. 
Sanchez's theory 22 incorporates such interactions but 
neglects chain connectivity. 

In conclusion, the factorization approximation to segment 
density distribution functions associated with three- 
segment interactions is responsible for the inconsistency 
of the OF smoothed-density theories 12 for A 2 and ~R 
with the first-order perturbation calculations 13. Thus, 
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analyses  based  on  the O F  theories  or  s imilar  mean-f ie ld  
theories  have litt le significance unless f13 is zero. After  
the comple t ion  of  the present  s tudy,  reference was made  
to work  by  Y a m a k a w a  23, who  expla ined  the posi t ive A 2 
of  shor t  chains  at  ® ~  as being due  to effects of  chain  ends. 
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